I am an assistant professor at the Technical University of Darmstadt, as well as a member of the Hessian Center for Artificial Intelligence (hessian.AI). The focus of my research is on developing efficient, robust, and understandable methods and algorithms for image and video analysis. I recently got the renowned Emmy Noether Programme (ENP) fund of the German Research Foundation (DFG) supporting my research on Interpretable Neural Networks for Dense Image and Video Analysis. Before starting my own group, I was a postdoctoral researcher in the Visual Inference Lab of Prof. Stefan Roth. Prior to joining TU Darmstadt, I was a postdoctoral researcher at the Media Technology Center at ETH Zurich working on augmented reality. I obtained my doctoral degree from ETH Zurich, advised by Prof. Dr. Markus Gross and in collaboration with Disney Research Zurich. In my doctoral thesis, awarded with the ETH Medal, I developed novel methods for motion representation and video frame interpolation.

News

Publications

Removing Cost Volumes from Optical Flow Estimators

S. Kiefhaber, S. Roth, S. Schaub-Meyer

2025 ICCV   (Oral Presentation)
2025 GCPR Nectar Track

ART: Adaptive Relation Tuning for Generalized Relation Detection

G. Sudhakaran, H. Shindo, P. Schramowski, S. Schaub-Meyer, K. Kersting, S. Roth

2025 ICCV
Preprint (arXiv) | Code

Motion-refined Dinosaur for Unsupervised Multi-Object Discovery,

X. Gong*, O. Hahn*, C. Reich, K. Singh, S. Schaub-Meyer, D. Cremers, S. Roth

2025 ICCV Workshop: Instance-Level Recognition and Generation (ILR)   (Oral Presentation)
Preprint (arXiv) | Code

Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model

J. Endres, O. Hahn, C. Corbière, S. Schaub-Meyer, S. Roth, A. Alahi

2025 IROS
Preprint (arXiv) | Project page | Code

Efficient Masked Attention Transformer for Few-shot Classification and Segmentation

D. Carrión-Ojeda, S. Roth, S. Schaub-Meyer

2025 GCPR
2025 ICCV Workshop: Representation Learning with Very Limited Resources: When Data, Modalities, Labels, and Computing Resources are Scarce (LIMIT)
Preprint (arXiv) | Project page | Code

GLASS: Guided Latent Slot Diffusion for Object-Centric Learning

K. Singh, S. Schaub-Meyer, S. Roth

2025 CVPR
Preprint (arXiv) | Paper | Supplement | Talk video | Project page

Disentangling Polysemantic Channels in Convolutional Neural Networks

R. Hesse, J. Fischer, S. Schaub-Meyer, S. Roth

2025 CVPR Workshop: Mechanistic Interpretability for Vision
Preprint (arXiv) | Code

Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images

K. Singh, T. Navaratnam, J. Holmer, S. Schaub-Meyer, S. Roth

2024 CVPR Workshop: SyntaGen-Harnessing Generative Models for Synthetic Visual Datasets   (Best Paper Award)
Preprint (arXiv) | Paper | Project page | Code

Boosting Unsupervised Semantic Segmentation with Principal Mask Proposals

O. Hahn, N. Araslanov, S. Schaub-Meyer, S. Roth

2024 TMLR
2024 CVPR Workshop: Workshop on Foundation Models
Preprint (arXiv) | Paper | Code

FunnyBirds: A Synthetic Vision Dataset for a Part-Based Analysis of Explainable AI Methods

R. Hesse, S. Schaub-Meyer, S. Roth

2023 ICCV   (Oral Presentation)
2023 GCPR Nectar Track
Paper | Supplement | Talk video | Code

Entropy-driven Unsupervised Keypoint Representation Learning in Videos

A. Younes, S. Schaub-Meyer, G. Chalvatzaki

2023 ICML
Paper | Project page | Code

Content-Adaptive Downsampling in Convolutional Neural Networks

R. Hesse, S. Schaub-Meyer, S. Roth

2023 CVPR Workshop: Efficient Deep Learning for Computer Vision
Paper | Supplement | Talk video | Poster | Code

Efficient Feature Extraction for High-resolution Video Frame Interpolation

M. Nottebaum, S. Roth, S. Schaub-Meyer

2022 BMVC
Paper | Supplement | Video | Talk video | Poster | Code

$S^2$-Flow: Joint Semantic and Style Editing of Facial Images

K. Singh, S. Schaub-Meyer, S. Roth

2022 BMVC
Paper | Supplement | Talk video | Poster | Code

Fast Axiomatic Attribution for Neural Networks

R. Hesse, S. Schaub-Meyer, S. Roth

2021 NeurIPS
Paper | Supplement | Talk video | Project page | Code

Dense Unsupervised Learning for Video Segmentation

N. Araslanov, S. Schaub-Meyer, S. Roth

2021 NeurIPS
Paper | Supplement | Video | Talk video | Code

Style Transfer for Keypoint Matching Under Adverse Conditions

A. Uzpak, A. Djelouah, S. Schaub-Meyer

2020 3DV
Paper | Code

Neural inter-frame compression for video coding

A. Djelouah, J. Campos, S. Schaub-Meyer, C. Schroers

2019 ICCV
Paper | Supplement

Deep Video Color Propagation

S. Meyer, V. Cornillère, A. Djelouah, C. Schroers, M. Gross

2018 BMVC
Preprint (arXiv) | Paper | Supplement | Video

PhaseNet for Video Frame Interpolation

S. Meyer, A. Djelouah, B. McWilliams, A. Sorkine-Hornung, M. Gross, C. Schroers

2018 CVPR
Paper | Supplement | Video | BibTex

Phase-Based Modification Transfer for Video

S. Meyer, A. Sorkine-Hornung, M. Gross

2016 ECCV   (Oral Presentation)
Paper | Video

Phase-based Frame Interpolation for Video

S. Meyer, O. Wang, H. Zimmer, M. Grosse, A. Sorkine-Hornung

2015 CVPR   (Oral Presentation)
Paper | Supplement | Video | Code